Abstract

MLD2P4 (Multi-Level Domain Decomposition Parallel Preconditioners Package based on PSBLAS) is a package of parallel algebraic multi-level preconditioners. It implements various versions of one-level additive and of multi-level additive and hybrid Schwarz algorithms. In the multi-level case, a purely algebraic approach is applied to generate coarse-level corrections, so that no geometric background is needed concerning the matrix to be preconditioned. The matrix is assumed to be square, real or complex, with a symmetric sparsity pattern.

MLD2P4 has been designed to provide scalable and easy-to-use preconditioners in the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms) computational framework and can be used in conjunction with the Krylov solvers available in this framework. MLD2P4 enables the user to easily specify different aspects of a generic algebraic multilevel Schwarz preconditioner, thus allowing to search for the “best” preconditioner for the problem at hand.

The package has been designed employing object-based techniques, using Fortran 95, with interfaces to additional third party libraries such as UMFPACK, SuperLU and SuperLU_Dist, that can be exploited in building multi-level preconditioners. The parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm for distributed-memory architectures; the inter-process data communication is based on MPI and is managed mainly through PSBLAS.

This guide provides a brief description of the functionalities and the user interface of MLD2P4.
Contents

Abstract i

1 General overview 1

2 Code distribution 3

3 Configuring and building MLD2P4 4
 3.1 Prerequisites ... 4
 3.2 Optional third party libraries 5
 3.3 Configuration options 5
 3.4 Bug reporting .. 8
 3.5 Example and test programs 8

4 Multi-level Schwarz preconditioners 9
 4.1 Background ... 9
 4.2 Algebraic multi-level Schwarz preconditioners based on
 smoothed aggregation 10

5 Getting started 15
 5.1 Examples .. 17

6 User interface 20
 6.1 Subroutine mld_precinit 21
 6.2 Subroutine mld_precset 22
 6.3 Subroutine mld_precbld 27
 6.4 Subroutine mld_precaply 28
 6.5 Subroutine mld_pretfree 29
 6.6 Subroutine mld_precdescr 30

7 Error handling 31

A License 32

References 33
1 General overview

The Multi-Level Domain Decomposition Parallel Preconditioners Package based on PSBLAS (MLD2P4) provides multi-level Schwarz preconditioners [24], to be used in the iterative solutions of sparse linear systems:

\[Ax = b, \] (1)

where \(A \) is a square, real or complex, sparse matrix with a symmetric sparsity pattern. These preconditioners have the following general features:

- both additive and hybrid multilevel variants are implemented, i.e. variants that are additive among the levels and inside each level, and variants that are multiplicative among the levels and additive inside each level; the basic Additive Schwarz (AS) preconditioners are obtained by considering only one level;

- a purely algebraic approach is used to generate a sequence of coarse-level corrections to a basic AS preconditioner, without explicitly using any information on the geometry of the original problem (e.g. the discretization of a PDE). The smoothed aggregation technique is applied as algebraic coarsening strategy [2, 28].

The package is written in Fortran 95, following an object-based approach through the exploitation of features such as abstract data type creation, functional overloading and dynamic memory management. The parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm for distributed-memory architectures. Single and double precision implementations of MLD2P4 are available for both the real and the complex case, that can be used through a single interface.

MLD2P4 has been designed to implement scalable and easy-to-use multilevel preconditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational framework [18]. PSBLAS is a library originally developed to address the parallel implementation of iterative solvers for sparse linear system, by providing basic linear algebra operators and data management facilities for distributed sparse matrices; it also includes parallel Krylov solvers, built on the top of the basic PSBLAS kernels. The preconditioners available in MLD2P4 can be used with these Krylov solvers. The choice of PSBLAS has been mainly motivated by the need of having a portable and efficient software infrastructure implementing “de facto” standard parallel sparse linear algebra kernels, to pursue goals such as performance, portability, modularity and extensibility in the development of the preconditioner package. On the other hand, the implementation of MLD2P4 has led to some revisions and extenstions of the PSBLAS kernels, leading to the recent PSBLAS 2.0 version [17]. The inter-process communication required by MLD2P4 is encapsulated into the PSBLAS routines, except few cases where MPI [25] is explicitly called. Therefore, MLD2P4 can be run on any parallel machine where PSBLAS and MPI implementations are available.

MLD2P4 has a layered and modular software architecture where three main layers can be identified. The lower layer consists of the PSBLAS kernels, the middle one implements the construction and application phases of the preconditioners, and the
upper one provides a uniform and easy-to-use interface to all the preconditioners. This architecture allows for different levels of use of the package: few black-box routines at the upper layer allow non-expert users to easily build any preconditioner available in MLD2P4 and to apply it within a PSBLAS Krylov solver. On the other hand, the routines of the middle and lower layer can be used and extended by expert users to build new versions of multi-level Schwarz preconditioners. We provide here a description of the upper-layer routines, but not of the medium-layer ones.

This guide is organized as follows. General information on the distribution of the source code is reported in Section 2, while details on the configuration and installation of the package are given in Section 3. A description of multi-level Schwarz preconditioners based on smoothed aggregation is provided in Section 4, to help the users in choosing among the different preconditioners implemented in MLD2P4. The basics for building and applying the preconditioners with the Krylov solvers implemented in PSBLAS are reported in Section 5, where fragments from the Fortran 95 codes of a few sample programs are also shown. A reference guide for the upper-layer routines of MLD2P4, which are the user interface, is provided in Section 6. The error handling mechanism used by the package is briefly described in Section 7. The copyright terms concerning the distribution and modification of MLD2P4 are reported in Appendix A.
2 Code distribution

MLD2P4 is available from the web site

http://www.mld2p4.it

where contact points for further information can be also found.

The software is available under a modified BSD license, as specified in Appendix A; please note that some of the optional third party libraries may be licensed under a different and more stringent license, most notably the GPL, and this should be taken into account when treating derived works.
3 Configuring and building MLD2P4

To build MLD2P4 it is necessary to set up a Makefile with appropriate values for your system; this is done by means of the `configure` script. The distribution also includes the autoconf and automake sources employed to generate the script, but usually this is not needed to build the software.

MLD2P4 is implemented almost entirely in Fortran 95, with some interfaces to external libraries in C; the Fortran compiler must support the Fortran 95 standard plus the extension TR15581, which enhances the usability of `ALLOCATABLE` variables. Most modern Fortran compilers support this language level. In particular, this is supported by the GNU Fortran compiler as of version 4.2.0; however we recommend to use the latest available release (4.4.2 at the time of this writing). The software defines data types and interfaces for real and complex data, in both single and double precision.

3.1 Prerequisites

The following base libraries are needed:

BLAS [13, 14, 20] Many vendors provide optimized versions of the Basic Linear Algebra Subprograms; if no vendor version is available for a given platform, the ATLAS software (http://math-atlas.sourceforge.net/) may be employed. The reference BLAS from Netlib (http://www.netlib.org/blas) are meant to define the standard behaviour of the BLAS interface, so they are not optimized for any specific platform, and should only be used as a last resort. Note that BLAS computations form a relatively small part of the MLD2P4/PSBLAS computations; they are however critical when using preconditioners based on the UMFPACK or SuperLU third party libraries.

MPI [19, 25] A version of MPI is available on most high-performance computing systems; only version 1.1 is required.

BLACS [15] The Basic Linear Algebra Communication Subprograms are available in source form from http://www.netlib.org/blacs; some vendors include them in their parallel computing support libraries.

PSBLAS [17, 18] Parallel Sparse BLAS is available from http://www.ce.uniroma2.it/psblas; version 2.3.1 (or later) is required. Indeed, all the prerequisites listed so far are also prerequisites of PSBLAS. To build the MLD2P4 library it is necessary to get access to the source PSBLAS directory employed to build the version under use; after the MLD2P4 build process completes, only the compiled form of the PSBLAS library is necessary to build user applications.

Please note that the four previous libraries must have Fortran interfaces compatible with MLD2P4; usually this means that they should all be built with the same compiler as MLD2P4.
3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these are optional, but if you enable them some defaults for multilevel preconditioners may change to reflect their presence.

SuperLU Dist [21] A sparse direct factorization package available from the same site as SuperLU; provides parallel factorization and triangular system solution for double precision real and complex data. We have tested version 2.1.

3.3 Configuration options

To build MLD2P4 the first step is to use the `configure` script in the main directory to generate the necessary makefile(s).

As a minimal example consider the following:

```
./configure --with-psblas=/opt/packages/psblas-2.3.1
```

which assumes that the various MPI compilers and support libraries are available in the standard directories on the system, and specifies only the PSBLAS build directory (note that the latter directory must be specified with an absolute path). The full set of options may be looked at by issuing the command `./configure --help`, which produces:

> `configure` configures MLD2P4 1.2 to adapt to many kinds of systems.

Usage: `./configure [OPTION]... [VAR=VALUE]...`

To assign environment variables (e.g., CC, CFLAGS...), specify them as `VAR=VALUE`. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

- `-h, --help` display this help and exit
- `--help=short` display options specific to this package
- `--help=recursive` display the short help of all the included packages
- `-V, --version` display version information and exit
-q, --quiet, --silent do not print ‘checking...’ messages
--cache-file=FILE cache test results in FILE [disabled]
-C, --config-cache alias for ‘--cache-file=config.cache’
-n, --no-create do not create output files
--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:
--prefix=PREFIX install architecture-independent files in PREFIX
[/usr/local]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFix]

By default, ‘make install’ will install all the files in
‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify
an installation prefix other than ‘/usr/local’ using ‘--prefix’,
for instance ‘--prefix=$HOME’.

For better control, use the options below.

Fine tuning of the installation directories:
--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]
--localstatedir=DIR modifiable single-machine data [PREFIX/var]
--libdir=DIR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc [/usr/include]
--datarootdir=DIR read-only arch.-independent data root [PREFIX/share]
--datadir=DIR read-only architecture-independent data [DATAROOTDIR]
--infodir=DIR info documentation [DATAROOTDIR/info]
--localedir=DIR locale-dependent data [DATAROOTDIR/locale]
--mandir=DIR man documentation [DATAROOTDIR/man]
--docdir=DIR documentation root [DATAROOTDIR/doc/mld2p4]
--htmldir=DIR html documentation [DOCDir]
--dvidir=DIR dvi documentation [DOCDir]
--pdfdir=DIR pdf documentation [DOCDir]
--psdir=DIR ps documentation [DOCDir]

Optional Packages:
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)
--with-psblas The source directory for PSBLAS, for example,
--with-psblas=/opt/packages/psblas-2.3.1

--with-libs
List additional link flags here. For example,
--with-libs=-lspecial_system_lib or
--with-libs=-L/path/to/libs

--with-clibs
additional CLIBS flags to be added: will prepend to CLIBS

--with-flibs
additional FLIBS flags to be added: will prepend to FLIBS

--with-library-path
additional LIBRARYPATH flags to be added: will prepend to LIBRARYPATH

--with-include-path
additional INCLUDEPATH flags to be added: will prepend to INCLUDEPATH

--with-module-path
additional MODULE_PATH flags to be added: will prepend to MODULE_PATH

--with-umfpack=LIBNAME
Specify the library name for UMFPACK library.
Default: "-lumfpack -lamd"

--with-umfpackdir=DIR
Specify the root directory for UMFPACK and AMD installation

--with-superlu=LIBNAME
Specify the library name for SUPERLU library.
Default: "-lslu"

--with-superludir=DIR
Specify the directory for SUPERLU library and includes.

--with-superludist=LIBNAME
Specify the libname for SUPERLUDIST library.
Requires you also specify SuperLU. Default: "-lslud"

--with-superludistdir=DIR
Specify the directory for SUPERLUDIST library and includes.

Some influential environment variables:

FC
Fortran compiler command
FCFLAGS
Fortran compiler flags
LDFLAGS
linker flags, e.g. -L<lib dir> if you have libraries in a nonstandard directory <lib dir>
LIBS
libraries to pass to the linker, e.g. -l<library>
CC
C compiler command
CFLAGS
C compiler flags
CPPFLAGS
C/C++/Objective C preprocessor flags, e.g. -I<include dir> if you have headers in a nonstandard directory <include dir>
CPP
C preprocessor
MPICC
MPI C compiler command

Use these variables to override the choices made by ‘configure’ or to help it to find libraries and programs with nonstandard names/locations.
Report bugs to <bugreport@ml2p4.it>.

Thus, a sample build specifying only the location of the BLACS and the use of UMFPACK from U. Florida Sparse Suite might be:

```
./configure --with-psblas=/home/user/psblas-2.3.1/ \
--with-blacs=-lmpiblacs --with-umfpackdir=/usr/local/SparseSuite/
```

Note that most options are taken up from the PSBLAS configure output and hence need not be specified. Once the configure script has completed the execution, it will have generated the file `Make.inc` which will then be used by all Makefiles in the directory tree.

To build the library the user will now enter

```
make
```

followed (optional) by

```
make install
```

3.4 Bug reporting

If you find any bugs in our codes, please let us know at bugreport@ml2p4.it; be aware that the amount of information needed to reproduce a problem in a parallel program may vary quite a lot.

3.5 Example and test programs

The package contains the `examples` and `tests` directories; both of them are further divided into `fileread` and `pdegen` subdirectories. Their purpose is as follows:

- `examples` contains a set of simple example programs with a predefined choice of preconditioners, selectable via integer values. These are intended to get an acquaintance with the multilevel preconditioners.

- `tests` contains a set of more sophisticated examples that will allow the user, via the input files in the `runs` subdirectories, to experiment with the full range of preconditioners implemented in the library.

The `fileread` directories contain sample programs that read sparse matrices from files, according to the Matrix Market or the Harwell-Boeing storage format; the `pdegen` instead generate matrices in full parallel mode from the discretization of a sample PDE.
4 Multi-level Schwarz preconditioners

4.1 Background

Domain Decomposition (DD) preconditioners, coupled with Krylov iterative solvers, are widely used in the parallel solution of large and sparse linear systems. These preconditioners are based on the divide and conquer technique: the matrix to be preconditioned is divided into submatrices, a “local” linear system involving each submatrix is (approximately) solved, and the local solutions are used to build a preconditioner for the whole original matrix. This process often corresponds to dividing a physical domain associated to the original matrix into subdomains, e.g. in a PDE discretization, to (approximately) solving the subproblems corresponding to the subdomains, and to building an approximate solution of the original problem from the local solutions [8, 9, 24].

Additive Schwarz (AS) preconditioners are DD preconditioners using overlapping submatrices, i.e. with some common rows, to couple the local information related to the submatrices (see, e.g., [9, 24]). The main motivation for choosing Additive Schwarz preconditioners is their intrinsic parallelism. A drawback of these preconditioners is that the number of iterations of the preconditioned solvers generally grows with the number of submatrices. This may be a serious limitation on parallel computers, since the number of submatrices usually matches the number of available processors.

Optimal convergence rates, i.e. a number of iterations independent of the number of submatrices, can be obtained by correcting the preconditioner using a suitable approximation of the original matrix in a coarse space, to globally couple the information related to the single submatrices. This process is called coarse-level correction and requires the solution of a linear system involving the coarse matrix. The combination of basic (one-level) Schwarz preconditioners with a coarse-level correction leads to the so-called two-level Schwarz preconditioners. In this context, the one-level preconditioner is often called ‘smoother’. The smoother and the coarse-level correction can be applied recursively to the coarse-level system, thus obtaining multi-level preconditioners. Different multi-level preconditioners are obtained by varying the choice of the smoother and of the coarse-level correction, and the way they are combined [24].

It is worth noting that optimal preconditioners do not necessarily correspond to minimum execution times. In order to obtain effective multi-level preconditioners, a tradeoff between optimality of convergence and the cost of building and applying the coarse-level corrections must be achieved. The choice of the number of levels also affects the performance of the preconditioners. One more goal is to get convergence rates as less sensitive as possible to variations in the matrix coefficients.

Two main approaches can be used to build coarse-level corrections. The geometric approach applies coarsening strategies based on the knowledge of some physical grid associated to the matrix and requires the user to define grid transfer operators from the fine to the coarse levels and vice versa. This may result difficult for complex geometries; furthermore, suitable one-level preconditioners may be required to get efficient interplay between fine and coarse levels, e.g. when matrices with highly varying coefficients are considered. The algebraic approach builds coarse-level corrections using only matrix in-
formation. It performs a fully automatic coarsening and enforces the interplay between
the fine and coarse levels by suitably choosing the coarse space and the coarse-to-fine
interpolation [26].

MLD2P4 uses a pure algebraic approach, based on the smoothed aggregation algo-
rithm [2, 28]. A decoupled version of this algorithm is implemented, where the smoothed
aggregation is applied locally to each submatrix [27]. In the next subsection we pro-
vide a brief description of the multi-level Schwarz preconditioners and of the smoothed
aggregation technique as implemented in MLD2P4. For further details the reader is
referred to [3, 4, 5, 10, 24].

4.2 Algebraic multi-level Schwarz preconditioners based on smoothed
aggregation

We outline a general framework for building and applying algebraic multilevel precon-
ditioners, which encompasses all the multi-level preconditioners available in MLD2P4.

Given the linear system (1), where \(A = (a_{ij}) \in \mathbb{R}^{n \times n} \) is a nonsingular sparse matrix
with a symmetric nonzero pattern, we assume as finest index space the set of row (column)
indices of \(A \), \(\Omega = \{1, 2, \ldots, n\} \). An algebraic multilevel method generates a
hierarchy of index spaces and a corresponding hierarchy of matrices,

\[
\Omega^1 \equiv \Omega \supset \Omega^2 \supset \ldots \supset \Omega^{n_{lev}}, \quad A^1 \equiv A, A^2, \ldots, A^{n_{lev}},
\]

(2)

by using the information contained in \(A \), without assuming any knowledge of the ge-
ometry of the problem from which \(A \) originates. A vector space \(\mathbb{R}^{n_k} \) is associated with
\(\Omega^k \), where \(n_k \) is the size of \(\Omega^k \). In the following we use the term contiguous for two
index spaces, vector spaces or associated matrices that correspond to subsequent levels
\(k \) and \(k + 1 \) of the hierarchy.

For each \(k < n_{lev} \), the method builds two maps between two contiguous vector
spaces, i.e. a prolongation and a restriction operator

\[
P^k : \mathbb{R}^{n_k+1} \longrightarrow \mathbb{R}^{n_k}, \quad R^k : \mathbb{R}^{n_k} \longrightarrow \mathbb{R}^{n_k+1};
\]

(3)

it is common to choose \(R^k = (P^k)^T \). The matrix \(A^{k+1} \) is computed by exploiting the
previous maps, usually according to the Galerkin approach, i.e.

\[
A^{k+1} = R^k A^k P^k.
\]

(4)

A smoother \(S^k \) is set, which provides an approximation of the inverse of the matrix
\(A^k \). At the coarsest level, a direct solver is generally considered to obtain the inverse
of \(A^{n_{lev}} \). The process just described corresponds to the so-called build phase of the
preconditioner and is sketched in Figure 1.

The components produced in the build phase may be combined in several ways to
obtain different multilevel preconditioners (see [24, Chapters 2 and 3]); this is done in
the application phase, i.e. in the computation of a vector of type \(w = M^{-1}v \), where
\(M \) denotes the preconditioner, usually within an iteration of a Krylov solver. Two
basic types of preconditioners can be identified, i.e. the additive and the multiplicative
4 Multi-level Schwarz preconditioners

\[A^1 \leftarrow A, \ \Omega^1 \leftarrow \Omega \]

\begin{algorithm}
 \textbf{for} \ k = 1, nlev - 1 \ \textbf{do} \\
 \quad \text{generate} \ \Omega^{k+1} \text{ from } \Omega^k \\
 \quad \text{define } P^k \text{ (and } R^k = (P^k)^T) \\
 \quad \text{compute } A^{k+1} = R^k A^k P^k \\
 \quad \text{set up} \ S^{k+1} \\
 \textbf{end for}
\end{algorithm}

Figure 1: Build phase of a multilevel preconditioner.

\[v^1 \leftarrow v \]

! Apply restrictor at all levels but the coarsest

\begin{algorithm}
 \textbf{for} \ k = 1, nlev - 1 \ \textbf{do} \\
 \quad v^{k+1} \leftarrow R^k v^k \\
 \textbf{end for}
\end{algorithm}

! Apply smoother at all levels

\begin{algorithm}
 \textbf{for} \ k = 1, nlev \ \textbf{do} \\
 \quad y^k \leftarrow S^k v^k \\
 \textbf{end for}
\end{algorithm}

! Apply prolongator and update

! at all levels but the coarsest

\begin{algorithm}
 \textbf{for} \ k = nlev - 1, 1, -1 \ \textbf{do} \\
 \quad y^k \leftarrow y^k + P^k y^{k+1} \\
 \textbf{end for}
\end{algorithm}

\[w \leftarrow y^1 \]

Figure 2: Application phase of an additive multilevel preconditioner.

one. In the additive case, at each level the smoother and the coarse-level correction are applied to the restriction of the vector \(v \) to that level, and the resulting vectors are added; this leads to the algorithm shown in Figure 2. In the multiplicative case, at each level the smoother and the coarse-level correction are applied in turn, the former on a vector resulting from the application of the latter and/or vice versa. An example of such a combination, where the smoother is applied before and after the coarse-level correction, is given in Figure 3; this is known as symmetrized multiplicative multilevel preconditioner or, more generally, \(V \)-cycle. Multiplicative multi-level preconditioners with pre-smoothing only are obtained by neglecting the last three statements in the second loop, while multiplicative multi-level ones with post-smoothing only correspond to setting \(y^k = 0 \) in the first loop, i.e. to performing only the restriction \(v^{k+1} \leftarrow R^k v^k \) in the first loop and to changing into \(y^k \leftarrow P^k y^{k+1} \) the first statement of the second loop.

At each level \(k < nlev \), MLD2P4 implements, as smoothers, domain decomposition AS preconditioners [6, 9, 24]. Therefore, the multilevel preconditioners based on the
Apply smoother and restrictor
! at all levels but the coarsest

for \(k = 1, n_{\text{lev}} - 1 \) **do**

\[
y^k \leftarrow S^k v^k
\]

\[
x^k \leftarrow v^k - A^k y^k
\]

\[
y^{k+1} \leftarrow R^k x^k
\]

end for

! Apply smoother at coarsest level

\[
y^{n_{\text{lev}}} = S^{n_{\text{lev}}} v^{n_{\text{lev}}}
\]

! At all levels but the coarsest, interpolate \(y^k \)
! update the residual, apply the smoother and update

\[
y^k
\]

for \(k = n_{\text{lev}} - 1, 1, -1 \) **do**

\[
y^k \leftarrow y^k + P^k y^{k+1}
\]

\[
x^k \leftarrow v^k - A^k y^k
\]

\[
x^k \leftarrow S^k x^k
\]

\[
y^k \leftarrow y^k + r^k
\]

end for

\[
w \leftarrow y^1
\]

Figure 3: Application phase of a symmetrized multiplicative multilevel preconditioner.

The multiplicative framework are referred to as *hybrid*, i.e. multiplicative among the levels and additive inside any single level. The point point-Jacobi smoother is available too; furthermore, multiple sweeps of each smoother can be performed.

In the AS methods the index space \(\Omega^k \) is divided into \(m_k \) subsets \(\Omega^k_i \) of size \(n_{k,i} \).

The subsets may have an overlap \(\delta \), which is defined using the adjacency graph \((\Omega^k, E^k)\) of the matrix \(A^k \), where \(\Omega^k \) is the vertex set and \(E^k = \{(i,j) : a^{k}_{ij} \neq 0\} \) is the edge set.

Two vertices are called adjacent if there is an edge connecting them. For any integer \(\delta > 0 \), a \(\delta \)-overlap partition of \(\Omega^k \) is defined recursively as follows. Given a \(0 \)-overlap partition of \(\Omega^k \), i.e. a set of \(m_k \) disjoint nonempty sets of \(\Omega^k(0) \subset \Omega^k \) such that \(\cup_{i=1}^{m_k} \Omega^k_i(0) = \Omega^k \), a \(\delta \)-overlap partition of \(\Omega^k \) is obtained by considering the sets \(\Omega^k_i(\delta) \supset \Omega^k_i(\delta - 1) \) obtained by including the vertices that are adjacent to any vertex in \(\Omega^k_i(\delta - 1) \). In MLD2P4 the number of sets \(\Omega^k_i \) matches the number of available processors and each processor is assigned one of these set. The 0-overlap partition at the finest level is determined by the (general row-block) distribution of the matrix to be preconditioned (see [17]).

For each \(i \) we consider the restriction operator \(R^k_i : \mathbb{R}^n_k \rightarrow \mathbb{R}^{n_{k,i}} \) that maps a vector \(v^k \) to the vector \(v^k_i \) made of the components of \(v^k \) with indices in \(\Omega^k_i \), and the prolongation operator \(P^k_i = (R^k_i)^T \). These operators are then used to build \(A^k_i = R^k_i A^k P^k_i \), which is a restriction of \(A^k \) to the index space \(\Omega^k_i \). The classical AS preconditioner is
Multi-level Schwarz preconditioners

are defined as

\[S_k^{AS} = \sum_{i=1}^{m_k} P_k^i (A_k^i)^{-1} R_k^i, \]

where \(A_k^i \) is supposed to be nonsingular. We observe that an approximate inverse of \(A_k^i \) is usually considered instead of \((A_k^i)^{-1} \). The application of \(S_k^{AS} \) to a vector \(w^k \in \mathbb{R}^{n_k} \), i.e. the computation of \(z^k = S_k^{AS} w^k \), requires

- the restriction of \(w^k \) to the subspaces \(\mathbb{R}^{n_k,i} \), i.e. \(w_i^k = R_k^i w^k \);
- the computation of the vectors \(z_i^k = (A_k^i)^{-1} w_i^k \);
- the prolongation and the sum of the previous vectors, i.e. \(z^k = \sum_{i=1}^{m_k} P_k^i z_i^k \).

Variants of the classical AS method, which use modifications of the restriction and prolongation operators, are also implemented in MLD2P4. Among them, the Restricted AS (RAS) preconditioner usually outperforms the classical AS preconditioner in terms of convergence rate and of computation and communication time on parallel distributed-memory computers, and is therefore the most widely used among the AS preconditioners [7, 16]. Direct solvers based on the LU factorization as well as approximate solvers based on the ILU factorization or on the point- and block-Jacobi iterative methods are implemented as smoothers at the coarsest level.

In MLD2P4 the hierarchy of index spaces (see (2)) and the corresponding mapping operators (see (3)) are built by applying the smoothed aggregation technique [2, 22, 28]. The basic idea is to build the coarse set of indices \(\Omega^{k+1} \) by suitably grouping the indices of \(\Omega^k \) into disjoint subsets (aggregates) and to define a simple “tentative” prolongator \(\tilde{P}^k \) whose range should contain the near null space of \(A^k \); the final interpolation operator \(P^k \) is formed by applying a suitable smoother to \(\tilde{P}^k \), in order to obtain low energy coarse basis functions and hence good convergence rates.

To build the aggregates we have implemented the coarsening algorithm sketched in [5]. According to [28], a modification of this algorithm has been actually considered, in which each aggregate \(N^k_r \) is made of vertices of \(\Omega^k \) that are strongly coupled to a certain root vertex \(r \in \Omega^k \), i.e.

\[N^k_r = \left\{ s \in \Omega^k : |a^k_{rs}| > \theta \sqrt{|a^k_{rr} a^k_{ss}|} \right\} \cup \{r\}, \]

for a given \(\theta \in [0, 1] \). Since this algorithm has a sequential nature, a decoupled version of it has been considered, where each processor \(i \) independently applies the algorithm to the set of vertices \(\Omega^k(0) \) assigned to it according to the initial data distribution [27]. This version is embarrassingly parallel, since it does not require any data communication. On the other hand, it may produce non-uniform aggregates near boundary vertices, i.e. near vertices adjacent to vertices in other processors, and is strongly dependent on the number of processors and on the initial partitioning of the matrix \(A \). Nevertheless, this algorithm has been chosen for the implementation in MLD2P4, since it has been shown to produce good results in practice [1, 4, 5, 27].
The tentative prolongator \tilde{P}^k is piecewise constant interpolation operator, defined as

$$\tilde{P}^k = (\tilde{p}_{ij}^k), \quad \tilde{p}_{ij}^k = \begin{cases} 1 & \text{if } i \in N^k_j \\ 0 & \text{otherwise} \end{cases}.$$ \hspace{1cm} (5)

Then P^k is computed as

$$P^k = S\tilde{P}^k,$$ \hspace{1cm} (6)

where

$$S = I - \omega D^{-1}A$$ \hspace{1cm} (7)

is the damped Jacobi smoother and the value of ω can be chosen using some estimate of the spectral radius of $D^{-1}A$ [2].
5 Getting started

We describe the basics for building and applying MLD2P4 one-level and multi-level Schwarz preconditioners with the Krylov solvers included in PSBLAS [17]. The following steps are required:

1. *Declare the preconditioner data structure.* It is a derived data type, `mld_rprec_type`, where `x` may be `s`, `d`, `c` or `z`, according to the basic data type of the sparse matrix (`s` = real single precision; `d` = real double precision; `c` = complex single precision; `z` = complex double precision). This data structure is accessed by the user only through the MLD2P4 routines, following an object-oriented approach.

2. *Allocate and initialize the preconditioner data structure, according to a preconditioner type chosen by the user.* This is performed by the routine `mld_precinit`, which also sets defaults for each preconditioner type selected by the user. The defaults associated to each preconditioner type are given in Table 1, where the strings used by `mld_precinit` to identify the preconditioner types are also given. Note that these strings are valid also if uppercase letters are substituted by corresponding lowercase ones.

3. *Modify the selected preconditioner type, by properly setting preconditioner parameters.* This is performed by the routine `mld_precset`. This routine must be called only if the user wants to modify the default values of the parameters associated to the selected preconditioner type, to obtain a variant of the preconditioner. Examples of use of `mld_precset` are given in Section 5.1; a complete list of all the preconditioner parameters and their allowed and default values is provided in Section 6, Tables 2-5.

4. *Build the preconditioner for a given matrix.* This is performed by the routine `mld_precbld`.

5. *Apply the preconditioner at each iteration of a Krylov solver.* This is performed by the routine `mld_precaply`. When using the PSBLAS Krylov solvers, this step is completely transparent to the user, since `mld_precaply` is called by the PSBLAS routine implementing the Krylov solver (`psb_krylov`).

6. *Free the preconditioner data structure.* This is performed by the routine `mld_precfree`. This step is complementary to step 1 and should be performed when the preconditioner is no more used.

A detailed description of the above routines is given in Section 6. Examples showing the basic use of MLD2P4 are reported in Section 5.1.

Note that the Fortran 95 module `mld_prec_mod`, containing the definition of the preconditioner data type and the interfaces to the routines of MLD2P4, must be used in any program calling such routines. The modules `psb_base_mod`, for the sparse matrix and communication descriptor data types, and `psb_krylov_mod`, for interfacing with the Krylov solvers, must be also used (see Section 5.1).
Preconditioner Types, Corresponding Strings and Default Choices

<table>
<thead>
<tr>
<th>Type</th>
<th>String</th>
<th>Default Preconditioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>No preconditioner</td>
<td>"NOPREC"</td>
<td>Considered only to use the PSBLAS Krylov solvers with no preconditioner.</td>
</tr>
<tr>
<td>Point-Jacobi</td>
<td>"JACOBI", "DIAG"</td>
<td>Point-Jacobi, i.e. diagonal, preconditioner (see note).</td>
</tr>
<tr>
<td>Block-Jacobi</td>
<td>"BJAC"</td>
<td>Block-Jacobi preconditioner, with ILU(0) on the local blocks.</td>
</tr>
<tr>
<td>Additive Schwarz</td>
<td>"AS"</td>
<td>Restricted Additive Schwarz (RAS) preconditioner, with overlap 1 and ILU(0) on the local blocks.</td>
</tr>
<tr>
<td>Multilevel</td>
<td>"ML"</td>
<td>Multi-level hybrid preconditioner (additive inside each level and multiplicative through the levels) with pre- and post-smoothing, i.e. symmetrized multiplicative. Number of levels: 2. Smoother: RAS (1 sweep) with overlap 1 and ILU(0) on the local blocks. Aggregation: decoupled smoothed aggregation with threshold $\theta = 0$. Coarsest matrix: distributed among the processors. Coarsest-level solver: 4 sweeps of the block-Jacobi solver, with LU or ILU(0) factorization of the blocks (UMFPACK for the double precision versions and SuperLU for the single precision ones, if the packages have been installed; ILU(0), otherwise).</td>
</tr>
</tbody>
</table>

Note: The string "DIAG" has been considered too, to ensure the compatibility of MLD2P4 with codes written to use the point-Jacobi preconditioner available in PSBLAS (see Remark 3, p. 19).

Table 1: Preconditioner types, corresponding strings and default choices.

Remark 1. The coarsest-level solver used by the default two-level preconditioner has been chosen by taking into account that, on parallel machines, it often leads to the smallest execution time when applied to linear systems coming from finite-difference discretizations of basic elliptic PDE problems, considered as standard tests for multilevel Schwarz preconditioners [4, 5]. However, this solver does not necessarily correspond to the smallest number of iterations of the preconditioned Krylov method, which is usually obtained by applying a direct solver to the coarsest-level system, e.g. based on the LU factorization (see Section 6 for the coarsest-level solvers available in MLD2P4).
Remark 2. The include path for MLD2P4 must override those for PSBLAS, i.e. the former must come first in the sequence passed to the compiler, as the MLD2P4 version of the Krylov solver interfaces must override that of PSBLAS. This will change in the future when the support for the class statement becomes widespread in Fortran compilers.

5.1 Examples

The code reported in Figure 4 shows how to set and apply the default multi-level preconditioner available in the real double precision version of MLD2P4 (see Table 1; we assume here that UMFPACK has been installed). This preconditioner is chosen by simply specifying ‘ML’ as second argument of mld_precinit (a call to mld_precset is not needed) and is applied with the BiCGSTAB solver provided by PSBLAS. As previously observed, the modules psb_base_mod, mld_prec_mod and psb_krylov_mod must be used by the example program.

The part of the code concerning the reading and assembling of the sparse matrix and the right-hand side vector, performed through the PSBLAS routines for sparse matrix and vector management, is not reported here for brevity; the statements concerning the deallocation of the PSBLAS data structure are neglected too. The complete code can be found in the example program file mld_dexample_ml.f90, in the directory examples/fileread of the MLD2P4 tree (see Section 3.5). For details on the use of the PSBLAS routines, see the PSBLAS User’s Guide [17].

The setup and application of the default multi-level preconditioners for the real single precision and the complex, single and double precision, versions are obtained with straightforward modifications of the previous example (see Section 6 for details). If these versions are installed, the corresponding Fortran 95 codes are available in examples/fileread/.

Different versions of multi-level preconditioners can be obtained by changing the default values of the preconditioner parameters. The code reported in Figure 5 shows how to set a three-level hybrid Schwarz preconditioner with post-smoothing only, which uses as smoother block-Jacobi with ILU(0) on the local blocks, has a coarsest matrix replicated on the processors, and solves the coarsest-level system with the LU factorization from UMFPACK [11]. The number of levels is specified by using mld_precinit; the other preconditioner parameters are set by calling mld_precset. Note that the type of multilevel framework (i.e. multiplicative among the levels with post-smoothing only) is not specified since it is the default set by mld_precinit.

Figure 6 shows how to set a three-level additive Schwarz preconditioner, which uses as smoother RAS, with overlap 1 and ILU(0) on the blocks, and applies five block-Jacobi sweeps, with LU from UMFPACK on the blocks, as distributed coarsest-level solver. Again, mld_precset is used only to set non-default values of the parameters (see Tables 2-5). In both cases, the construction and the application of the preconditioner are carried out as for the default multi-level preconditioner. The code fragments shown in in Figures 5-6 are included in the example program file mld_dexample_ml.f90 too.

Finally, Figure 7 shows the setup of a one-level additive Schwarz preconditioner, i.e.
use psb_base_mod
use mld_prec_mod
use psb_krylov_mod

... ... !
! sparse matrix
type(psb_dspmat_type) :: A
! sparse matrix descriptor
type(psb_desc_type) :: desc_A
! preconditioner
type(mld_dprec_type) :: P
! right-hand side and solution vectors
real(kind(1.d0)) :: b(:), x(:)

... ... !
! initialize the parallel environment
call psb_init(ictxt)
call psb_info(ictxt,iam,np)

... ... !
! read and assemble the matrix A and the right-hand side b
! using PSBLAS routines for sparse matrix / vector management
... ... !
! initialize the default multi-level preconditioner, i.e. two-level
! symmetrized multiplicative Schwarz, using 1 sweep of RAS (with overlap 1
! and ILU(0) on the blocks) as smoother and 4 block-Jacobi sweeps (with
! UMFPACK LU on the blocks) as distributed coarse-level solver
call mld_precinit(P,'ML',info)

! build the preconditioner
call mld_precbld(A,desc_A,P,info)

! set the solver parameters and the initial guess
... ... !
! solve Ax=b with preconditioned BiCGSTAB
call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info)

... ... !
! deallocate the preconditioner
call mld_precfree(P,info)
! deallocate other data structures
... ... !
! exit the parallel environment
call psb_exit(ictxt)
stop

Figure 4: Setup and application of the default multi-level Schwarz preconditioner.
RAS with overlap 2. The corresponding example program is available in `mld_dexample_1lev.f90`.

For all the previous preconditioners, example programs where the sparse matrix and the right-hand side are generated by discretizing a PDE with Dirichlet boundary conditions are also available in the directory `examples/pdegem`.

Remark 3. Any PSBLAS-based program using the basic preconditioners implemented in PSBLAS, i.e. the point-Jacobi (diagonal) and block-Jacobi ones, can use the point-Jacobi and block-Jacobi preconditioners implemented in MLD2P4 without any change in the code. The PSBLAS-based program must be only recompiled and linked to the MLD2P4 library.

```fortran
... ...
! set a three-level hybrid Schwarz preconditioner with post-smoothing
! only, which uses 1 sweep of block-Jacobi (with ILU(0) on the blocks)
! as smoother, a coarsest matrix replicated on the processors, and the
! LU factorization from UMFPACK as coarsest-level solver
  call mld_precinit(P,'ML',info,nlev=3)
  call mld_precset(P,mld_smoother_pos_, 'POST',info)
  call mld_precset(P,mld_smoother_type_,'BJAC',info)
  call mld_precset(P,mld_coarse_mat_,'REPL',info)
  call mld_precset(P,mld_coarse_solve_,'UMF',info)
  ... ...
```

Figure 5: Setup of a hybrid three-level Schwarz preconditioner.

```fortran
... ...
! set a three-level additive Schwarz preconditioner, which uses
! 1 sweep of RAS (with overlap 1 and ILU(0) on the blocks) as
! smoother and 5 block-Jacobi sweeps (with UMFPACK LU on the
! blocks) as distributed coarsest-level solver
  call mld_precinit(P,'ML',info,nlev=3)
  call mld_precset(P,mld_ml_type_,'ADD',info)
  call mld_precset(P,mld_coarse_sweeps_,5,info)
  ... ...
```

Figure 6: Setup of an additive three-level Schwarz preconditioner.

```fortran
... ...
! set RAS with overlap 2 and ILU(0) on the local blocks
  call mld_precinit(P,'AS',info)
  call mld_precset(P,mld_sub_ovr_,2,info)
  ... ...
```

Figure 7: Setup of a one-level Schwarz preconditioner.
6 User interface

The basic user interface of MLD2P4 consists of six routines. The four routines \texttt{mld_precinit}, \texttt{mld_precset}, \texttt{mld_precbld} and \texttt{mld_precaply} encapsulate all the functionalities for the setup and the application of any one-level and multi-level preconditioner implemented in the package. The routine \texttt{mld_precfree} deallocates the preconditioner data structure, while \texttt{mld_precdescr} prints a description of the preconditioner setup by the user.

For each routine, the same user interface is overloaded with respect to the real/-complex case and the single/double precision; arguments with appropriate data types must be passed to the routine, i.e.

- the sparse matrix data structure, containing the matrix to be preconditioned, must be of type \texttt{mld_xspmat_type} with \(x = s \) for real single precision, \(x = d \) for real double precision, \(x = c \) for complex single precision, \(x = z \) for complex double precision;

- the preconditioner data structure must be of type \texttt{mld_xprec_type}, with \(x = s, d, c, z \), according to the sparse matrix data structure;

- the arrays containing the vectors \(v \) and \(w \) involved in the preconditioner application \(w = M^{-1}v \) must be of type \texttt{type(kind_parameter)}\texttt{, with type = real, complex and kind_parameter = kind(1.e0), kind(1.d0)}, according to the sparse matrix and preconditioner data structure; note that the PSBLAS module \texttt{psb_base_mod provides the constants psb_spk_ = kind(1.e0) and psb_dpk_ = kind(1.d0)};

- real parameters defining the preconditioner must be declared according to the precision of the sparse matrix and preconditioner data structures (see Section 6.2).

A description of each routine is given in the remainder of this section.
6 User interface

6.1 Subroutine mld_precinit

\[\text{mld_precinit}(p, \text{ptype}, \text{info}) \]
\[\text{mld_precinit}(p, \text{ptype}, \text{info}, \text{nlev}) \]

This routine allocates and initializes the preconditioner data structure, according to the preconditioner type chosen by the user.

Arguments

- **p**: `type(mld_xprec_type), intent(inout)`. The preconditioner data structure. Note that `x` must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.
- **ptype**: `character(len=*), intent(in)`. The type of preconditioner (see below). Note that the strings are case insensitive.
- **info**: `integer, intent(out)`. Error code. If no error, 0 is returned. See Section 7 for details.
- **nlev**: `integer, optional, intent(in)`. The number of levels of the multilevel preconditioner. If `nlev` is not present and `ptype='ML', 'ml'`, then `nlev=2` is assumed. Otherwise, `nlev` is ignored.

The available preconditioner types are those described in table 1, briefly repeated here: Legal inputs to this subroutine are interpreted depending on the `ptype` string as follows:\(^1\):

- **NOPREC** No Preconditioner
- **JACOBI** Point-Jacobi (the string **DIAG** is also allowed);
- **BJAC** Block-Jacobi;
- **AS** Additive Schwarz;
- **ML** Multi-Level Schwarz.

\(^1\)The string is case-insensitive
6.2 Subroutine mld_precset

\texttt{mld_precset}(p,\texttt{what},\texttt{val},\texttt{info})

This routine sets the parameters defining the preconditioner. More precisely, the parameter identified by \texttt{what} is assigned the value contained in \texttt{val}.

Arguments

- \texttt{p} \hspace{1cm} \text{type(mld_xprec_type), intent(inout)}.
 The preconditioner data structure. Note that \texttt{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.

- \texttt{what} \hspace{1cm} \text{integer, intent(in)}.
 The number identifying the parameter to be set. A mnemonic constant has been associated to each of these numbers, as reported in Tables 2-5.

- \texttt{val} \hspace{1cm} \text{integer or character(len=*), or real(psb_spk_), or real(psb_dpk_), intent(in)}.
 The value of the parameter to be set. The list of allowed values and the corresponding data types is given in Tables 2-5. When the value is of type \text{character(len=*), it is also treated as case insensitive.}

- \texttt{info} \hspace{1cm} \text{integer, intent(out)}.
 Error code. If no error, 0 is returned. See Section 7 for details.

A variety of (one-level and multi-level) preconditioners can be obtained by a suitable setting of the preconditioner parameters. These parameters can be logically divided into four groups, i.e. parameters defining

1. the type of multi-level preconditioner;

2. the one-level preconditioner used as smoother;

3. the aggregation algorithm;

4. the coarsest-level correction.

A list of the parameters that can be set, along with their allowed and default values, is given in Tables 2-5. For a detailed description of the meaning of the parameters, please refer to Section 4.1.
<table>
<thead>
<tr>
<th>what</th>
<th>DATA TYPE</th>
<th>val</th>
<th>DEFAULT</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>mld_ml_type_</td>
<td>character(len=*)</td>
<td>'ADD'</td>
<td>'MULT'</td>
<td>Basic multi-level framework: additive or multiplicative among the levels (always additive inside a level).</td>
</tr>
<tr>
<td>mld_smoother_type_</td>
<td>character(len=*)</td>
<td>'JACOBI'</td>
<td>'AS'</td>
<td>Basic one-level preconditioner (i.e. smoother): point-Jacobi, block-Jacobi, AS.</td>
</tr>
<tr>
<td>mld_smoother_pos_</td>
<td>character(len=*)</td>
<td>'PRE'</td>
<td>'TWOSIDE'</td>
<td>"Position" of the smoother in the multilevel framework: pre-smoother, post-smoother, pre- and post-smoother. Ignored if mld_ml_type_ is set to 'ADD'.</td>
</tr>
<tr>
<td>mld_smoother_sweeps_</td>
<td>integer</td>
<td>Any int. num. > 0</td>
<td>1</td>
<td>Number of sweeps of the (pre-/post) smoother. When mld_ml_type_ is set to 'MULT', it sets the default value for both mld_smoother_sweeps_pre_ and mld_smoother_sweeps_post_.</td>
</tr>
<tr>
<td>mld_smoother_sweeps_pre_</td>
<td>integer</td>
<td>Any int. num. > 0</td>
<td>1</td>
<td>Number of sweeps of the pre-smoother. Used if mld_ml_type_ is set to 'MULT' and mld_smoother_pos_ is 'PRE' or 'TWOSIDE'.</td>
</tr>
<tr>
<td>mld_smoother_sweeps_post_</td>
<td>integer</td>
<td>Any int. num. > 0</td>
<td>1</td>
<td>Number of sweeps of the post-smoother. Used if mld_ml_type_ is set to 'MULT' and mld_smoother_pos_ is 'POST' or 'TWOSIDE'.</td>
</tr>
</tbody>
</table>

Table 2: Parameters defining the type of multi-level preconditioner.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>mld_sub_ovr_</td>
<td>integer</td>
<td>≥0</td>
<td>Number of overlap layers.</td>
</tr>
<tr>
<td>mld_sub_restr_</td>
<td>character</td>
<td>'HALO'</td>
<td>Type of restriction operator:</td>
</tr>
<tr>
<td></td>
<td>(len=*)</td>
<td></td>
<td>'HALO' for taking into account the overlap, 'NONE' for neglecting it.</td>
</tr>
<tr>
<td>mld_sub_prol_</td>
<td>character</td>
<td>'SUM'</td>
<td>Type of prolongation operator:</td>
</tr>
<tr>
<td></td>
<td>(len=*)</td>
<td></td>
<td>'SUM' for adding the contributions from the overlap, 'NONE' for neglecting it.</td>
</tr>
<tr>
<td>mld_sub_solve_</td>
<td>character</td>
<td>'ILU'</td>
<td>Local solver for block-Jacobi and AS:</td>
</tr>
<tr>
<td></td>
<td>(len=*)</td>
<td></td>
<td>'ILU' from UMFPACK, 'LU from SuperLU', 'ILU(d)' (ILU), 'MILU(d)' (MILU), 'ILU(p,t)' (ILU(p,t)), 'ILUT(p,t)' (ILU(p,t)), 'SLU' (SLU), 'SLUPACK' (SLUPACK).</td>
</tr>
<tr>
<td>mld_sub_fillin_</td>
<td>integer</td>
<td>0</td>
<td>Fill-in level of the incomplete LU factorizations.</td>
</tr>
<tr>
<td>mld_sub_iluthrs_</td>
<td>real</td>
<td>0</td>
<td>Drop tolerance in the ILU(p,t) factorizations.</td>
</tr>
<tr>
<td>mld_sub_ren_</td>
<td>character</td>
<td>'RENUM'</td>
<td>Row and column reordering of the local submatrices: no reordering, reordering according to the global numbering of the rows and columns of the whole matrix.</td>
</tr>
<tr>
<td></td>
<td>(len=*)</td>
<td></td>
<td>'RENUM' for reordering, 'GLOBAL' for reordering according to the global numbering of the rows and columns of the whole matrix.</td>
</tr>
<tr>
<td>what</td>
<td>DATA TYPE</td>
<td>val</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>mld_aggr_alg_</td>
<td>character(len=*</td>
<td>'DEC'</td>
<td>'DEC'</td>
</tr>
<tr>
<td>mld_aggr_kind_</td>
<td>character(len=*</td>
<td>'SMOOTHED'</td>
<td>'SMOOTHED'</td>
</tr>
<tr>
<td>mld_aggr_thresh_</td>
<td>real(kind=parameter)</td>
<td>Any real num. ∈ [0, 1]</td>
<td>0</td>
</tr>
<tr>
<td>mld_aggr_omega Alg_</td>
<td>character(len=*</td>
<td>'EIG_EST'</td>
<td>'EIG_EST'</td>
</tr>
<tr>
<td>mld_aggr_eig_</td>
<td>character(len=*</td>
<td>'A_NORMI'</td>
<td>'A_NORMI'</td>
</tr>
<tr>
<td>mld_aggr_omega_val_</td>
<td>real(kind=parameter)</td>
<td>Any nonnegative real num.</td>
<td>$4/(3\rho(D^{-1}A))$</td>
</tr>
</tbody>
</table>

Table 4: Parameters defining the aggregation algorithm.
Table 6: Parameters defining the coarsest-level correction.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>mld_coarse_mat_</td>
<td>character</td>
<td>'DISTR'</td>
<td>Coarsest matrix: distributed among the processors or replicated on each of them.</td>
</tr>
<tr>
<td>mld_coarse_solve_</td>
<td>character</td>
<td>'JACOBI'</td>
<td>Solver used at the coarsest level: point-Jacobi or block-Jacobi.</td>
</tr>
<tr>
<td>mld_coarse_subsolve_</td>
<td>character</td>
<td>'ILU'</td>
<td>Solver for the diagonal blocks of the coarse matrix.</td>
</tr>
<tr>
<td>mld_coarse_sweeps_</td>
<td>integer</td>
<td>Any int. num. > 0</td>
<td>Number of point-Jacobi or block-Jacobi sweeps of the coarsest-level solver.</td>
</tr>
<tr>
<td>mld_coarse_fillin_</td>
<td>integer</td>
<td>Any int. num. ≥ 0</td>
<td>Fill-in level of the incomplete LU factorization.</td>
</tr>
<tr>
<td>mld_coarse_iluthrs_</td>
<td>real</td>
<td>Any real num. ≥ 0</td>
<td>Drop tolerance in the ILU(p,t) factorization.</td>
</tr>
</tbody>
</table>

Note: Defaults for mld_coarse_subsolve are chosen as follows:
- Single precision version: SLU if installed, else ILU if installed, ILU otherwise.
- Double precision version: 'ILU' if installed, else 'SLU' if installed, 'ILU' otherwise.

- single precision version: 'SLU' if installed, else 'ILU' otherwise.
- double precision version: 'ILU' if installed, else 'SLU' if installed, 'ILU' otherwise.

Default CO-MENTES
6.3 Subroutine mld_precbld

\texttt{mld_precbld(a,desc_a,p,info)}

This routine builds the preconditioner according to the requirements made by the user through the routines \texttt{mld_precinit} and \texttt{mld_precset}.

Arguments

- \texttt{a} \texttt{type(psb_zspmat_type), intent(in).}
 The sparse matrix structure containing the local part of the matrix to be preconditioned. Note that \texttt{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use. See the PSBLAS User’s Guide for details [17].

- \texttt{desc_a} \texttt{type(psb_desc_type), intent(in).}
 The communication descriptor of \texttt{a}. See the PSBLAS User’s Guide for details [17].

- \texttt{p} \texttt{type(mld_xprec_type), intent(inout).}
 The preconditioner data structure. Note that \texttt{x} must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.

- \texttt{info} \texttt{integer, intent(out).}
 Error code. If no error, 0 is returned. See Section 7 for details.
6.4 Subroutine mld_precaply

\texttt{mld_precaply(p,x,y,desc_a,info)}
\texttt{mld_precaply(p,x,y,desc_a,info,trans,work)}

This routine computes \(y = op(M^{-1})x \), where \(M \) is a previously built preconditioner, stored into \(p \), and \(op \) denotes the preconditioner itself or its transpose, according to the value of \(\text{trans} \). Note that, when MLD2P4 is used with a Krylov solver from PSBLAS, \texttt{mld_precaply} is called within the PSBLAS routine \texttt{psb_krylov} and hence it is completely transparent to the user.

Arguments

\(p \)
\texttt{type(mld_xprec_type), intent(inout).}
The preconditioner data structure, containing the local part of \(M \). Note that \(x \) must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.

\(x \)
\texttt{type(kind_parameter), dimension(:), intent(in).}
The local part of the vector \(x \). Note that \(type \) and \(kind_parameter \) must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.

\(y \)
\texttt{type(kind_parameter), dimension(:), intent(out).}
The local part of the vector \(y \). Note that \(type \) and \(kind_parameter \) must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.

\(\text{desc_a} \)
\texttt{type(psb_desc_type), intent(in).}
The communication descriptor associated to the matrix to be preconditioned.

\(\text{info} \)
\texttt{integer, intent(out).}
Error code. If no error, 0 is returned. See Section 7 for details.

\(\text{trans} \)
\texttt{character(len=1), optional, intent(in).}
If \(\text{trans} = \text{'N', 'n'} \) then \(op(M^{-1}) = M^{-1} \); if \(\text{trans} = \text{'T', 't'} \) then \(op(M^{-1}) = M^{-T} \) (transpose of \(M^{-1} \)); if \(\text{trans} = \text{'C', 'c'} \) then \(op(M^{-1}) = M^{-C} \) (conjugate transpose of \(M^{-1} \)).

\(\text{work} \)
\texttt{type(kind_parameter), dimension(:), optional, target.}
Workspace. Its size should be at least \(4 \times \text{psb_cd_get_local_cols(desc_a)} \) (see the PSBLAS User’s Guide). Note that \(type \) and \(kind_parameter \) must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.
6.5 Subroutine mld_precfree

\texttt{mld_precfree(p,info)}

This routine deallocates the preconditioner data structure.

\textbf{Arguments}
\begin{itemize}
 \item \texttt{p} \hspace{1cm} \texttt{type(mld_xprec_type), intent(inout).}
 \hspace{1cm} The preconditioner data structure. Note that x must be chosen
 \hspace{1cm} according to the real/complex, single/double precision version
 \hspace{1cm} of MLD2P4 under use.
 \item \texttt{info} \hspace{1cm} \texttt{integer, intent(out).}
 \hspace{1cm} Error code. If no error, 0 is returned. See Section 7 for details.
\end{itemize}
6.6 Subroutine mld_precdescr

 mld_precdescr(p,info)
 mld_precdescr(p,info,iout)

This routine prints a description of the preconditioner to the standard output or to a file. It must be called after mld_precbld has been called.

Arguments

 p type(mld_xprec_type), intent(in).
 The preconditioner data structure. Note that x must be chosen according to the real/complex, single/double precision version of MLD2P4 under use.
 info integer, intent(out).
 Error code. If no error, 0 is returned. See Section 7 for details.
 iout integer, intent(in), optional.
 The id of the file where the preconditioner description will be printed; the default is the standard output.
7 Error handling

The error handling in MLD2P4 is based on the PSBLAS (version 2) error handling. Error conditions are signaled via an integer argument \texttt{info}; whenever an error condition is detected, an error trace stack is built by the library up to the top-level, user-callable routine. This routine will then decide, according to the user preferences, whether the error should be handled by terminating the program or by returning the error condition to the user code, which will then take action, and whether an error message should be printed. These options may be set by using the PSBLAS error handling routines; for further details see the PSBLAS User’s Guide [17].
A License

The MLD2P4 is freely distributable under the following copyright terms:

MLD2P4 version 1.2
MultiLevel Domain Decomposition Parallel Preconditioners Package
based on PSBLAS (Parallel Sparse BLAS version 2.3.1)

(C) Copyright 2008, 2009
Salvatore Filippone University of Rome Tor Vergata
Alfredo Buttari University of Rome Tor Vergata
Pasqua D’Ambra ICAR-CNR, Naples
Daniela di Serafino Second University of Naples

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions, and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the MLD2P4 group or the names of its contributors may
 not be used to endorse or promote products derived from this
 software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
References

